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Abstract

Surface wave dynamics of vertical falling films under monochromatic-frequency flowrate-forcing perturbations is

computed by the direct simulation of Navier–Stokes equations using the Volume of Fluid (VOF) method to track free

surfaces and the Continuum Surface Force (CSF) model to account for dynamic boundary conditions at free surfaces.

The numerical VOF–CSF model is completely formulated, and more attention is given to understanding instabilities of

thin films. At low frequency and high flowrate, the small inlet disturbance develops into large solitary waves preceded

by small capillary bow waves. The circulation flow compatible with the solitary wave size is observed in the solitary

peak. On the other hand, at high frequency and low Re, small-amplitude waves in nearly sinusoidal shape without fore-

running capillary waves are formed on the surface. The quasi-periodic waveforms are found to occur at the nearly

sinusoidal wave regime. The slight increase in wave-amplitude and wavelength, and decrease in residual thickness as

waves evolves downstream are observed for both solitary waves and sinusoidal types. The variation of velocity and

pressure along a wave are strong at the wave trough and capillary wave region, due to the large surface curvature there.

The pressure variation perpendicular to the wall is negligible and only a small variation is observed at the solitary wave

trough and capillary region.

� 2003 Elsevier B.V. All rights reserved.
1. Introduction

Surface wave evolution on a thin film falling down an inclined or vertical surface exhibits a rich variety

of wave dynamics, and thus has attracted the attention of many researchers. As summarized in the recent

review by Chang [1] and the comprehensive study by Liu and Gollub [2], well-characterized periodic surface

waves occur at a low to medium region of flowrate (Re < 200). The thin film flow is unstable to long-wave

disturbances, and the instability is dominated by gravity, viscosity and surface tension effects.
Yih [3] was the first to formulate linear instability from infinitesimal long-wave disturbances and give the

instability condition
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Here, b is the inclination angle to the horizontal and a is the wavenumber. Re is based on the average

velocity u� and thickness h� of the corresponding flat film, and We ¼ r=qu2�h� with r the surface tension and

q the mass density. If wavelengths are substantially long, the above equation reduces to the most often cited

relation Rec ¼ ð6=5Þ cot b. The linear-wave velocity at onset is 3. In another form of the linear solution, the
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which has been recently verified experimentally by Liu and co-workers [2,4]. After the onset of instability,

the exponential growth is rapidly arrested by nonlinear effects, and steady finite-amplitude sinusoidal waves

or large-amplitude solitary waves are formed within a frequency range. The nonlinear dynamics was in-

vestigated by weakly nonlinear theories [5,6], and recently by advanced nonlinear theories [1,7] based on the

boundary layer equations.

Since the pioneering experiment by Kapitza and Kapitza [8] in 1949, extensive experimental studies of

wavy thin films have been done by Krantz and Goren [9] in the early 1970s, and Alekseenko et al. [10] in the
1980s, and recently by Nosoko et al. [11], Liu and Gollub [2] and Liu et al. [12]. The work of Krantz and

Goren [9], where the Re number is less than or about 1, is essentially limited to the linear region. The

Kapitza and Kapitza [8] flows are in the range of 7 < Re < 23, and the Nosoko et al. [11] experiment spans

a wide range 15 < Re < 90. Kapitzas [8], Alekseenko et al. and Nosoko et al. all have observed small-

amplitude sinusoidal waves and large-amplitude solitary waves with fore-running capillary waves. Nosoko

et al. [11] provided an empirical equation relating the wave traveling velocity to flowrate, surface tension

and forcing perturbation frequency for the steady-state waves on vertical films. Alekseenko et al. [10] did

velocity profile measurements and analyzed the variation of velocity profiles from the parabolic one for
sinusoidal-type and solitary-type waves.

The experiments performed by Liu and co-workers [2,12] are on inclined films with a small angle to the

horizontal (4–10�), and thus they were able to observe closely the whole evolution process of a small inlet

perturbation. In the work of Liu and Gollub [2] it took about 150 cm running length to obtain steady-state

periodic waves, whereas on falling films [8,10,11] it was just 10–30 cm. Liu and Gollub [2] gave a com-

prehensive picture to show the frequency ranges in which finite-amplitude sinusoidal waves, large-ampli-

tude solitary waves, and sideband and subharmonic secondary instabilities appear, respectively. The later

work of Liu et al. [12] was focused on the transition from well-developed 2-D waves to 3-D waves, in which
the transitional instability was divided into synchronous mode and the herringbone pattern. Liu and

co-workers [2,12] also performed systematic analyses of solitary wave dynamics and provided valuable

suggestions and information to future nonlinear theoretical treatments.

Although experimental evidence indicates that a 2-D regular wave pattern can result from a natural

disturbance [8,11] or periodic forcing disturbance, apparently it is difficult to obtain such a regular wavy

surface without periodic forcing, especially on a film with a small inclination angle. Indeed, Liu and Gollub

[2] pointed out that regular waves do not appear on their inclined films without forcing. All of the

aforementioned studies employ forcing disturbances. Krantz and Goren used wire vibrations submerged in
the film to generate waves. The Kapitza and Kapitza [8], Alekseenko et al. [10], Nosoko et al. [11] and Liu

and co-workers [2,12] excited the waves by pulsations of liquid flowrate. These experiments show that the

evolution of 2-D waves and the resulted steady-state wave shapes are strongly dependent on forcing fre-

quencies. For a given Re, large solitary waves, which have a very steep front and fore-running capillary

waves, appear at low frequencies, while finite-amplitude sinusoidal waves are present at high frequencies.
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Wavy film flow is a challenge both for experimental measurement and for numerical simulation due to

the typical length scales: a few millimeters thickness, but tens to hundreds centimeters running length to

exhibit wave characters. Thanks to numerous available experimental and theoretical studies, wavy film
flows under high viscosity and surface tension effects also serve as good examples for the validation of a

numerical scheme for simulating free-surface flows. The direct numerical study can offer further insights

into thin film instability that are not easily obtained from experiments. There are some pertinent com-

putations using Finite-Element Methods (FEM), such as Ho and Patera [13], Malamataris and Papa-

nastasiou [14], Salamon et al. [15], Ramaswamy et al. [16] and Krishnamoorthy et al. [17]. Malamataris

et al. focused on a modified outflow boundary condition by calculating traveling waves in truncated

domains. Salamon et al. [15] assumed an initial sinusoidal waveform, and solved the governing equations

in the reference frame moving with the wave. Ramaswamy et al. [16] and Krishnamoorthy et al. [17] used
the so-called Arbitrary Eulerian–Lagrangian method, where a grid velocity (wx;wy) must be judiciously

selected in order to handle very large deformations. The moving surface was captured by a Lagrangian-

type method (spine). The computations made by Ho and Patera [13], Salamon et al. [15], Ramaswamy

et al. [16] and Krishnamoorthy et al. [17] introduced spatial waves on initial films and used periodic

boundary conditions with the constraint that the mean film thickness is conserved. This is not compatible

with the experimental conditions corresponding obviously to an open flow condition where the flowrate

is conserved. Indeed, both Kapitza and Kapitza [8] and Alekseenko et al. [10] reported a decrease of the

average film downstream.
It is desired to simulate film flow under an inlet flowrate perturbation and investigate the response to

the small monochromatic forcing disturbance. The computational film running length must be long

enough to allow the inlet disturbance to evolve into steady-state periodic waves, and thus a vertical film

is often the choice for such computations. Here we use the Volume of Fluid (VOF) surface tracking

method [18–20] based on the finite volume idea, and the Continuum Surface Force (CSF) model [19,21]

to account for the surface tension effect. Different from the above-mentioned numerical method, the

present numerical scheme is based on a fixed staggered grid. We do not need to assume a prior

waveform and velocity, and to re-formulate the equations in a moving frame. The method is general to
any kinds of free-surface flows. There is no special treatment for the wavy film flows. We will present

the simulation results and compare the results with the corresponding experimental data for selected

characteristic terms, and provide further analysis and discussion in conjunction with what we have

already known about thin film instability. To be consistent with most research on this topic, the results

are presented in the dimensionless system with the flat film height and average velocity as the scaling

values.
2. Governing equations

We consider a two-dimensional thin film flow on an inclined plane at angle b to the horizontal. The

x-axis is oriented streamwise along the plane. The y-axis is perpendicular to the plane in the film thickness

direction with the origin at the liquid-plane interface. The flow is considered to be a laminar incompressible

Newtonian and isothermal flow with velocity field V ¼ ðu; vÞ, and governed by the Navier–Stokes equations

and continuity equation as:
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where the characteristic length and velocity are chosen to be the corresponding flat film thickness h� and

average velocity u�. The time t is normalized by h�=u� and pressure p by qu2�, with q the mass density of

liquid. The dimensionless parameters: Reynolds (Re), Froude (Fr) and Weber (We) are defined as

Re ¼ u�h�
m

; Fr2 ¼ u2�
gh�

; We ¼ r
qu2�h�

; ð6Þ

where m is the kinematic viscosity of liquid, g the gravity, and r the surface tension. The velocity profile and

average velocity of the fully developed flat film are

u ¼ 3

2
ð2y � y2Þ; u� ¼

gh2� sin b
3m

: ð7Þ

Due to the normalization by the flat film, we have Fr2 ¼ Re=3.
The boundary conditions on the bottom wall are the non-slip condition and the lack of liquid flowing

into and out-of the plane, as formulated

u ¼ v ¼ 0 at y ¼ 0: ð8Þ

As the liquid drains downstream, the film thickness hðx; tÞ varies with the streamwise distance and time. The

interface location is associated with the local velocity by the kinematic condition

v ¼ oh
ot

þ u
oh
ox

at y ¼ h: ð9Þ

At a free surface, the normal stress is balanced by the capillary force and the shear stress vanishes for the

constant property flow. The dynamic conditions at an interface can be written as

�T � n̂n � n̂n� pgas ¼ jWe at y ¼ h; ð10Þ

where T ¼ �pIþ ðrVþ ðrVÞTÞ=Re is the stress tensor with I the identity tensor, j ¼ �o2h=ox2½1þ
ðoh=oxÞ2��3=2

is the curvature of the interface, n̂n ¼ ð�oh=ox; 1Þ½1þ ðoh=oxÞ2��1=2
is the unit outward normal

vector.
3. Numerical methods and conditions

The numerical simulation of free-surface flows composed of two immiscible fluids involves two coupled

tasks: (1) resolving the flow field and (2) updating the position of the interface. The first task is completed

by solving the Navier–Stokes equations. It is numerically implemented via the projection method, where an

intermediate velocity field is first determined from the diffusion–convection equations without regard to the

pressure term, and then the pressure is decoupled from the momentum equations to construct the Pressure

Poisson Equation (PPE). In the second step, the PPE is solved and the pressure field is used to correct the
preliminary velocity prediction, thus recovering the continuity constraint. The second task is carried out via

the Volume of Fluid (VOF) method [18–20]. The VOF method actually keeps and updates the field of

volume fraction of one fluid in each cell instead of surface height. The advantage of the VOF method is that

there is no topological constraint. Thus, the VOF method has been widely used to track the interface of two

immiscible fluids, such as water and air. In the present work, the one-fluid model (where gas phase dy-

namics is ignored) is implemented in the code for computations. Sometimes the one-flow model is also
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termed the void model because the gas phase is often assumed void. The surface tension is taken into

account through the Continuum Surface Force (CSF) model [19,21], where the surface force is transformed

to a body force Fsv which is only non-zero in the limited thickness interface region. The scalar f is used to
denote the volume fraction field also called VOF field. Therefore, the governing equations for the one-fluid

VOF–CSF model include the Navier–Stokes equations, continuity equation and VOF advection equation.

They are written as:

oV

ot
þ ðV � rÞV ¼ ql
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where ĝg ¼ ðsin b;� cos bÞ is the unit gravity vector and s is the viscous stress tensor. The VOF advection

equation (13) appears in the conservative form adopted from Puckett et al. [22]. The dimensionless gov-

erning equations indicate that besides liquid properties, the gas properties are also required to obtain the
localized �qq, �ll by the volume weighted average of two liquids as

�qq ¼ fql þ ð1� f Þqg; �ll ¼ fll þ ð1� f Þlg; ð14Þ

where the subscript l denotes liquid and the subscript g denotes gas.

During the numerical solution process, we apply the free-surface boundary conditions. There are three

hydrodynamic boundary conditions at free surfaces: normal stress balance, tangential stress balance, and

the kinematic equation. The kinematic condition is implied by the VOF advection. The dynamics stress

balance is realized through the CSF model incorporated in the momentum equations by introducing a

volume force Fsv. The localized volume force Fsv is calculated from the volume fraction data by

Fsv ¼ Wejrf ; ð15Þ

where j is the curvature of surface. The interface characteristic parameters, the outward normal vector n

and curvature j, are calculated as
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The VOF method involves a lot of details during solving VOF advection, or say, updating VOF data.

The split-operator method [22] is used for VOF advection. As indicated by its name, a split algorithm first

moves the fluid at one component of the velocity and obtains an intermediate VOF field, and then moves
the fluid at the other component of the velocity and obtains the final VOF data. By this idea, Eq. (13) is split

to:

of
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Discretizing f implicitly on the right-hand side of Eq. (18) and explicitly on the right-hand side of Eq. (19),

we obtain the finite difference operator-split VOF advection equation

f �
i;j ¼ f n
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where Fiþ1=2;j denotes the x-flux of the liquid across the right face of cell ði; jÞ in Dt and Gi;jþ1=2 denotes the
y-flux of the liquid across the top face. Near a free surface as illustrated in Fig. 1, only the dark area inside

the rectangular area with width uiþ1=2;jDt and height Dyj, not the whole rectangular, will cross the right face
and enter the ðiþ 1; jÞ cell in the Dt interval. The flux Fiþ1=2;j is decided by

Fiþ1=2;j ¼ Viþ1=2;j=ðDtDyjÞ; ð22Þ

where the volume Viþ1=2;j is determined from the free surface geometry.

The surface configuration is required by VOF advection to maintain mass conservation, namely to
calculate the Viþ1=2;j in the above specific case. Here, a surface is constructed as segment lines in local cell

coordinates from the VOF data of the previous time step. The VOF method usually consists of two parts:

an interface reconstruction algorithm to determine the interface and a VOF advection algorithm to update

the volume fraction data. A surface line can be determined by the normal vector and the interception length

with the local y-axis. For example, for the cell ði; jÞ as shown in Fig. 2, the surface is represented by the line

function y ¼ ki;jxþ di;j. The slope is obtained from the normal vector ni;j by ki;j ¼ �½nx=ny �i;j. The inter-

section point of the line with the local y-axis is determined by the volume of liquid in the cell and the slope.

Specifically for the case of 0 < ki;j < Dyj=Dxi and Vi;j < jki;jjDx2i =2, the value di;j given by

di;j ¼ � Dyj=2
�

� ð2kV Þ1=2i;j þ ki;jDxi=2
�
: ð23Þ

Other cases at the different fluid occupation conditions can be computed in a similar way.
u(i+1/2,j)∆t

u(i+1/2,j)

∆xi

∆yj (i,j)

Fig. 1. The x-flux calculation in the VOF split advection algorithm. Only the volume of the dark fluid at the right of the dotted line in

the cell ði; jÞ crosses the right face of the cell in Dt.
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Fig. 2. An example of intersection displacement calculation. The dark area denotes the volume occupied by fluid.
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We can improve accuracy by alternating the sweep directions and using more than one sub-cycle (ex-

perienced value is about 2–4) in one timestep to update the VOF data. Furthermore, special attention

should be paid to the implementation of the algorithm on the originally empty cells that now have fluid

after the VOF advection. We need to assign velocity of the newcoming fluid to be equal to the velocity of its

donor, not only for the sweep-direction velocity component, but also for the others. Another easy-to-make

error will lead to diminished fluid volume. For example, for an empty cell (i, j) at n timestep, if the liquid

enters from its left face in the next timestep, we have uiþ1=2;j � ui�1=2;j < 0 due to uiþ1=2;j ¼ 0, making the
VOF value calculated from Eq. (20) smaller than it should be. We need to artificially let the velocity dif-

ference be equal to zero for these front cells. A simple case – a droplet with an initial velocity moving

diagonally in a square domain without gravity, is recommended to check the VOF advection algorithm. An

appropriate extrapolation of the velocity field to the outside of a free surface is also a key point for cal-

culating the viscous force, which is extremely important for viscosity dominated flows, such as thin film

flows at low Reynolds numbers. The empty cell next to a free-surface cell has the same velocity as the free-

surface cell. The one-fluid model is good on the convergence of the Pressure Poisson Equation (PPE) by

adjusting coefficients of discretized PPE to give zero pressure for the gas/void cells. A detailed description of
the VOF method is available in [23] and in related material of the RIPPLE [19].

For the VOF method based on a fixed rectangular grid, since the free surface is no longer the real

computational boundary, the boundary conditions for the computation area become very simple: non-slip

boundary condition at the bottom and top wall, continuous condition at the outlet and a given velocity at

the inflow. The flow is initiated to be the flat film corresponding to the given Re, and the inflow is fixed over

the flat film thickness to the same parabolic velocity profile as

uin ¼ 3
2
ð2y � y2Þuav; ð24Þ

where uav is the average velocity containing the forcing perturbation as

uav ¼ 1þ � sinð2pFtÞ: ð25Þ

Here, F is the dimensionless forcing frequency and � is the disturbance magnitude. The film running length

needs to be quite long to show the development of inlet disturbances. The computation area is 600 or 500 in

the x-direction and 2 in the y-direction. The mesh size is 0.4 in x and 0.1 in y. Again the numbers are given
in dimensionless units.

The coding and computation are carried out in an IBM AIX environment on an RS/6000 cluster ma-

chine. The computation is operated in the serial computing mode, but research into migrating to parallel
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computing is in progress. The computation time step is controlled by parameters such as velocity, surface

tension, viscosity and mesh size, and encoded in the code. The most time-consuming part is the solving of

the PPE, which is done by using the LU factorization solver residing in the ESSL and IMSL math library
on the machine.
4. Results and discussion

We choose the vertical (b ¼ 90�) film configuration in this work under the consideration that regular-

pattern waves on vertical films will be well developed in a relatively short distance from the inlet forcing

source.

4.1. Small-amplitude waves

The film flow parameters are chosen to be Re ¼ 20:1, We ¼ 33:5, which corresponds to the experimental
case of No. 11 of PLATE 41 reported in the Kapitza study [8]. The parameters are based on the film

thickness and average velocity of the flat film, which are determined from the experimentally reported

flowrate to be h� ¼ 0:183 mm, u� ¼ 10:865 cm/s, t� ¼ 1:684� 10�3 s. Kapitza and Kapitza [8] did not

provide the forcing frequency, but reported the steady-state wavelength k and wave velocity uw. In our

numerical calculation, we obtain the inlet forcing frequency through the relation F ¼ uw=k from those

reported data with the assumption that the waves inherit the frequency of inlet perturbation. The

dimensionless forcing frequency is F ¼ 4:57� 10�2 which corresponds to 27 Hz. The disturbance magni-

tude � is set to 0.05.
Fig. 3 shows the evolution of the film flow under the inlet forcing perturbation. The small capillary

ripples rapidly spread over the whole free surface due to the large surface tension. It is seen that the small

capillary waves grow in time, but the wave at the end of exponentially growing region is the largest at the

developing stage. Being convective in nature, the waves are transported downstream. In the process, the

larger-amplitude waves, due to gravity acceleration, tend to travel faster to catch up with the smaller waves

to form even larger ones. It is seen that the biggest one merges with its precursors until it leaves the

computational domain. Thereafter, steady-state finite-amplitude waves are established behind. Since at the

steady state the waves have nearly the same shape and amplitude, they will travel at nearly the same speed,
and no more wave merging processes occurs. We do not see the wave splitting process nor break-up/rupture

locations on the film; the film stays continuous. The merging process has been studied experimentally by

Liu et al. [2] and numerically by Ramaswamy et al. [16], where the wave interaction is called inelastic one

because no repulsion appears as two waves come close to each other. It is often observed that the large one

absorbs the slower one.

From the bottom sub-figure of Fig. 3 for the almost steady-state wavy film, we can see that the small

disturbance introduced at the inlet experiences a short distance of exponential growth near the inlet. The

onset waves behave as predicted by the linear analyses [3] because the forcing frequency is smaller than the
cut-off Fc ¼ 1:53� 10�1. The growth is then arrested by the nonlinear stabilizing effect, and the waves

saturate to achieve finite-amplitude stationary periodic waves where the wave shape and wave speed remain

unchanged with time and downstream distance. However, they are not exactly stationary; they are nearly

stationary. If we perform a close checkup of the picture, we still find (though it is not easy to detect) slightly

increasing in wavelength and amplitude, and decreasing in the residual thickness along the nearly stationary

periodic wave region. This wave behavior has recently been summarized by Chang [1], and is essentially

consistent with the findings by Kapitza and Kapitza [8] and Alekseenko et al. [10] that the mean film

thickness decreases as the magnitude of wave motion increases. At the stationary wave regime, the averaged
film thickness is 0.945, which compares well with 0.955 given by Alekseenko et al. [10] for the same
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Fig. 3. Instantaneous film thickness for Re ¼ 20:1, We ¼ 33:5 and F ¼ 4:57� 10�2.
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parameters of Re ¼ 20:4 and k ¼ 48. But we have to point out the working liquid in Alekseenko et al. is

glycerine solution, not water that is used in [8] and in this research. The reduction of film thickness also

complies with the reduction by 4% performed by Salamon et al., which led to much better agreement to

experimental measurement for wave-velocity.

The calculated wave shape of the almost stationary periodic wave is compared to the shadowgraph

provided by Kapitza and Kapitza [8] and the comparison is shown in Fig. 4. The experimental stationary

waveform and the numerical one are very similar. The waves appear as a train of nearly sinusoidal-shape

waves with a small amplitude. The shape of waves exhibits a slightly steep front and gentle tail. The
curvature is large at the wave trough and small at the wave crest and tailing slope. Far downstream from

the inlet, we see the waveform deviating from the finite-amplitude sinusoidal type, and a secondary in-

stability (quasi-periodic wave) [2,16] is present. If the plane is sufficiently long, it is expected to see the

evolution of sinusoidal waves to large-amplitude solitary waves far downstream as described in [1], and

recently verified by Liu and Gollub [2]. Liu et al. [12] gave extensive images (Fig. 13 in [2]) showing that

solitary waves can be formed from the evolution of sinusoidal waves along streamwise at the 2-D wave



Fig. 4. Comparison of wave shapes taken from (a) simulated result of this work, and (b) Kapitza shadowgraph for Re ¼ 20:1,

We ¼ 33:5 and F ¼ 4:57� 10�2.
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condition. However, as indicated in [12], 2-D small-amplitude waves may develop to be the 3-D before they
become solitary waves.

To calculate the wave speed, the view of waveforms at two close moments are magnified and displayed in

Fig. 5. The dimensionless wave velocity is 2.2 which is obtained from the separation distance between two

trains of waves divided by the time interval. The wave speed of this numerical computation is translated to

uw ¼ 23:8 cm/s. Compared with Kapitza�s measurement of uw ¼ 21:7 cm/s, this value is acceptable and

within the limits of experiments and computations because the VOF method essentially tracks VOF data,

reconstructs approximate surfaces and replaces the surface tension force with a body force approximately

[24]. However, the result is not as good as the wave velocity uw ¼ 22:2 cm/s reported by Ho and Patera [13]
and Salamon et al. [15] using a FEM, where the mean film thickness was conserved, periodic boundary

conditions were used, and importantly a Lagrangian-type method (spine) was used to capture the moving

surfaces. In the FEMs, the kinematic condition is solved numerically in the mass-conservative form:

oh=ot þ oQ=ox ¼ 0, where Q is the flowrate. In periodic boundary conditions, averaging over the domain

simply gives ohhi=ot ¼ 0 such that the mean film thickness is conserved in time and the flowrate is increased

accordingly after the onset of waves [10]. Going back to the experiments where a periodic forcing is applied,

the signal is time periodic (in most of the situations) such that averaging over a period gives ohQi=ox ¼ 0

and the mean flowrate is conserved in space. To justify the speculation, Salamon et al. [15] calculated the
wavy film flow at the reduced flat film height h� by 4%, and resulted in the identical wave velocity of

uw ¼ 21:7 cm/s. Novertheless, we value the VOF method for such free-surface flow simulations. As sum-

marized by Popinet and Zaleski [25], VOF methods are relatively easy in dealing with large surface de-

formations, extending to 3-D, and programming. More importantly here, the method can simulate the film

flows in experimental conditions.
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Fig. 5. Two trains of stationary waves for Re ¼ 20:1, We ¼ 33:5 and F ¼ 4:57� 10�2.
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4.2. Large-amplitude waves

In recent years, Japanese scientist Nosoko et al. [11] reported their experimental observations and

measurements of 2-D surface wave dynamics on vertical water films at different forcing frequencies and

flowrates. The experimental work covered a wide range of Re (15–90). The traveling wave on the films tends

to inherit forcing frequency. They summarized their experimental data and provided a functional depen-

dence of wave velocity on Re, We and wavelength k, that is,

uw ¼ 1:87We�0:06Re�0:293k0:31: ð26Þ

We choose the vertical film with parameters Re ¼ 69, We ¼ 4:2, and calculated the free surface shapes at

the two disturbance frequencies, F ¼ 4:86� 10�2 and F ¼ 3:3� 10�2 corresponding to 45 and 30 Hz. The

cut-off frequency from Eq. (2) is 4:39� 10�1. The disturbance amplitude is � ¼ 0:03 or � ¼ 0:05. We cal-

culated the wavy film perturbed by these two amplitudes at F ¼ 4:86� 10�2, and we found no difference in

wavy characters at the steady state. In fact, all the experiments [2,10,11] reported that the steady-state wave
shape is sensitive to the forcing frequency, but insensitive to the forcing strength.

Similar to the previous Kapitza case, after the growing and merging transition stage, the waves saturate

to stationary waves downstream. The steady-state wavy surface shapes are shown in Fig. 6 for

F ¼ 4:86� 10�2 and in Fig. 7 for F ¼ 3:3� 10�2. The waves downstream exhibit strong periodic regularity.

The characteristic values of the waves, shape, wavelength, amplitude and phase velocity, remain nearly

unchanged, thus they are considered the stationary waves in most theoretical studies. Of course, after close
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observation and comparison, we perceive the wavelength actually increases slightly with the downstream

distance. As we discussed before, this tiny variation may create a problem for simulations using periodic

boundary conditions.
In order to estimate the wave velocity, the figures are magnified in x-direction and are focused on the

stationary wave region. They are shown in Figs. 8 and 9. For F ¼ 4:86� 10�2, the wavelength is estimated

k ¼ 40, and the wave velocity is uw ¼ 1:85. For F ¼ 3:3� 10�2, the respective values are k ¼ 62 and

uw ¼ 2:0. Together with the previous simulation result for the Kapitza case, the comparison of simulated

wave velocity with Nosoko data summarized in Eq. (26) is plotted in Fig. 10. The results are in good
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agreement for the small-amplitude sinusoidal waves, but a little off for the large-amplitude waves at high

flowrates.

The above figures also show clearly that the wave shapes are sensitive to forcing frequencies. For the
physical and numerical conditions of these two films, the only difference is the forcing frequency. We can

see that the inlet perturbation condition prescribes the wave behaviors at a given Re. At low frequency

F ¼ 3:3� 10�2, the stationary wave amplitude and wavelength are much larger than the values at the

higher frequency F ¼ 4:86� 10�2. The tailing edge for wave at F ¼ 3:3� 10�2 is bent down to form a kind

of concave curve, while the tailing edge is nearly an inclined linear line for F ¼ 4:86� 10�2. The behaviors

relative to frequency correspond to those experimental observations [2,10,11]. Compared with the previous

Kapitza case, both working frequencies here are much smaller than the cut-off Fc ¼ 4:39� 10�1, so that

the larger-amplitude and more stable waves are formed; whereas in the Kapitza case, the waves near the
outlet already display secondary instability. This is qualitatively in agreement with Liu and Gollub [2]. The

capillary waves in front of the solitary wave in Fig. 7 have the wavelength of about 4, a little larger than half

of the critical wavelength kc=2 ¼ 3:4. Liu and Gollub [2] found that the wavelength of such a fore-runner is

about half of kc predicted by the linearly stability theory [3].

4.3. Analysis of two different waves

Recalling the Kapitza vertical water (19.6 �C) wavy film shown in Fig. 5 with parameters Re ¼ 20:1,
F ¼ 4:57� 10�2 (corresponding to 27 Hz), we recognize the distinct difference from Nosoko�s water (23 �C)
film of Re ¼ 69, F ¼ 3:3� 10�2 (corresponding to 30 Hz) lies with flowrates. In the case of the high flowrate

of Nosoko�s film (shown in Fig. 9), a large-amplitude solitary wave is preceded by two small-amplitude

capillary bow waves. On the other hand, in the Kapitza case, the small amplitude waves are close to each
other and no fore-running capillary waves are generated. The wave shape is a nearly sinusoidal shape with a

slightly steeper front and gentle tail. To obtain sinusoidal-type waves on a high flowrate film, the forcing

frequency needs to be increased to near the cut-off frequency [2] which precisely increases with the flowrate.

However, it is not easy to have stable sinusoidal-type waves; they often manifest quasi-periodic behaviors.

Liu and Gollub [2] and Ramaswamy et al. [16] have demonstrated that near the cut-off frequency region,

the sideband secondary instability will be more likely to appear rather than sinusoidal-type waves. The

qusi-periodic waves already come into sight at the end of flow domain shown in Fig. 3. We have also

calculated the case with Re ¼ 17:23, We ¼ 41:06 and F ¼ 4:81� 10�2 which has the closer to cut-off fre-
quency than the Kapitza case in Fig. 3. The quasi-periodic waves are very obvious there: double-peak waves

appear at the very beginning of evolving path, the amplitudes of both peaks are almost equal, and relative

positions of peaks change along streamwise. Note that when the frequency is too high, 3-D instability [12]

may first set in before the 2-D waves saturate to a finite-amplitude sinusoidal-type, leading to chaotic

surface dynamics.

Figs. 11 and 12 show the velocity vector for about one wavelength of the stationary waves, respectively,

for these two films. The vector plots are obtained for the reference coordinates moving with wave velocity

uw ¼ 2:2 and uw ¼ 2:0, respectively, for the Re ¼ 20:1 case and Re ¼ 69 case. For both waves, the velocity
field is complicated in the trough region. The strongest variation occurs at the trough in front of the large

solitary wave. Inside the large-amplitude wave, as shown in Fig. 12, a large circulation flow is observed;

while a circulation is not displayed for the small-amplitude wave shown in Fig. 11. Perhaps this is the

reason that large-amplitude stationary waves are often called roll waves. The circulation is restricted in the

peak. No circulation is developed at the residual layer. Miyara [26] reported a similar circulation via

streamlines at the moving coordinates.

The x-velocity profiles for various parts of the wave are shown in Fig. 13 for the nearly sinusoidal wave

and in Fig. 14 for the solitary wave. The velocity profiles are plotted in the dimensionless coordinates (y=h,
u=Umax) according to normalization by the maximum velocity and film thickness of the respective cross
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sections, so that the velocity profiles at various positions can be drawn in one plot. The positions where the

velocity profiles are drawn are indicated and numbered by vertical lines in the legend plot accompanying

each velocity profile figure. The solid line in each velocity profile plot designates the parabolic profile for flat

films. As seen in the figures, the velocity profile around the crest region and the tailing slope region is very

close to the parabolic profile, while at the trough and capillary wave region, the velocity profile undergoes

great change with significant variation from the parabolic profile. In Fig. 14, velocity profile 2 bulges over

the parabolic line and profile 3 bends down the parabolic line. The intersection of these two profiles points
to the existence of circulation flow in the large solitary wave. In contrast, for the nearly sinusoidal wave in

Fig. 13, overlaid profiles 2 and 3 indicate the absence of the vortex. The velocity profiles are basically

consistent with the Alekseenko et al.�s [10] experimental study as shown in Fig. 15, except that they did not

point out the circulation in the big roll. Alekseenko et al. [10] gave the velocity distributions for two

characteristic types of waves on a vertical film at Re ¼ 12:4. Although the Alekseenko et al. film is not

exactly the same as the film we are calculating, Alekseenko et al. [10] implied the dimensionless velocity

profile is general to the sinusoidal-type and solitary waves.
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The pressure distributions over the range of the x-axis x ¼ 310 � 380, which covers one stationary

wave for both types of waves, are plotted in Figs. 16 and 17. The ps is the free surface pressure taken

from the first 100% filled cell next to the surface and pw is the pressure next to wall. For the x-positions



Fig. 15. Velocity profiles along the waves from Alekseenko et al. [10].
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relative to the waveforms, please refer to Figs. 5 and 9. In the trough region and capillary wave region

where the curvature of the surface is large, the pressure undergoes substantial variation due to the surface

tension plus large curvature. The pressure variation at the interface is slightly greater than that at the
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wall. In other regions, the pressure distribution is almost equal to zero (the gas pressure), and the dif-

ference between surface pressure and wall pressure is negligible. The variation of pressure across film

thickness for the large-amplitude solitary wave is greater than for the small-amplitude wave. The dif-
ference between surface pressure and wall pressure can be recognized in the figure for solitary waves. At

the wave trough in front of the solitary wave, the surface pressure approaches the lowest value ps ¼ �1:6.
At the capillary wave region, the pressure distribution also undergoes the oscillation curve corresponding

to the surface wave shape.

Periodic boundary conditions are often used to study the nearly stationary waves on thin films [13,15,16].

With the periodic conditions, the computation domain is reduced to one or a few wavelengths, but one can

still obtain the wave behaviors after a long time of evolution, so that the computation efficiency is highly

improved. The recent computation by Ramaswamy et al. [16] using periodic boundary conditions gave very
nice results. Here, we have tried the calculation of Kapitza case with Re ¼ 20:1, We ¼ 33:5 and k ¼ 44 under

such periodic conditions, where the film surface is initiated to hðx; 0Þ ¼ 1þ 0:02 sinð2px=kÞ. The compu-

tation domain is four times the wavelength in the x-direction and two times the flat film height in the

y-direction. The result is shown in Fig. 18, which clearly shows two distinct wave profiles at t ¼ 380. The

system does not conserve the stationary traveling waves observed by Kapitza and Kapitza [8] after at least

100 time units, but present quasi-periodic waves instead. Actually, the result is consistent with Fig. 3 ob-

tained by using fixed inlet perturbation, and we already mentioned the quasi-periodic behaviors a few times

in previous sections. The quasi-periodic waves appear at the end of evolution course in Fig. 3. The first
nearly stationary sinusoidal wave to the last one is about 300 length units apart. Recalling the wave velocity

is about 2.2, we estimate that it needs about 136 time units for onset of the quasi-periodic waves. In fact, the

two wave profiles were already reported by Ramaswamy et al. [16] (see Figs. 4 and 5 in their paper) in their

calculation. They indicated that Kapitza and Kapitza [8] did not observe this type of behaviors because the

test section is not long (17 cm) enough for such evolution to emerge. Indeed, Liu and Gollub [2] observed

the quasi-periodic waves on their very long test film (200 cm). As far as we have seen, computations using

periodic boundary conditions are useful tools to understand secondary instabilities, transitions to other

types of periodics or disorder of film flow, which most of the times come into view after long time/long
course of wave evolution.
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Fig. 18. Simulation result of spatially spread waves under the periodic conditions for Re ¼ 20:1, We ¼ 33:5 and k ¼ 44.
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5. Conclusion

Direct numerical simulations of the Navier–Stokes equations using the VOF method have been per-

formed. We have computed surface wave dynamics on vertical thin film flows under a forcing perturbation

at the inlet. The computational results are consistent with reported experimental data and numerical studies

at various conditions. The parameters affecting wave characteristics are Re, We and disturbance frequency

F , and we focus on Re and F . The small forcing perturbation introduced at the inlet experiences an ex-

ponential growth and finally achieves a steady nearly-stationary wave state with the wave shape and wave
velocity almost unchanged. The nearly stationary waves in fact experience very gradual increases in

wavelength and amplitude as they travel downstream due to gravity acceleration, and the phenomenon is

more noticeable for the vertical configuration. At low frequency and high flowrate, the small disturbance

develops into a solitary wave preceded by small capillary bow waves, and the circulation flow field (in the

wave traveling frame) with the size compatible to the solitary wave scale is observed in the solitary wave

peak. At high frequency and low Re, the small-amplitude sinusoidal wave without fore-running capillary

waves is formed at surface. The quasi-periodic instability is found to accompany the sinusoidal waves. The

wave velocity increases with wave separation length and decreases with Re in general. The variation of
velocity and pressure are strong at the wave trough and capillary wave region due to the large curvature

there. The pressure variation perpendicular to the wall is negligible and only small variations are observed

at the solitary wave trough and capillary region. The variation of pressure along the wave propagation

direction for the large-amplitude solitary wave is much greater than that for the small-amplitude wave.

The governing equations and the VOF–CSF model for tracking free surfaces and implementing free-

surface boundary conditions have been thoroughly described, and the numerical scheme has been applied

to the simulation of 2-D thin film flows. The computation using periodic boundary conditions has been

tried and the result shows the quasi-periodic wave behaviors in agreement with the conclusions of Ra-
maswamy et al. [16]. Although the results seem less favorable when compared with other numerical studies

[13,15,16] in an FEM, it is worth the effort to place the VOF method into wide applications because it has

less constraints. Far downstream from the perturbation source, the nonlinear waves will evolve to be 3-D.

Liu et al. [12] have recently done a detailed experimental study of transitional 3-D waves attached to 2-D

waves. It is encouraged to extend the 2-D numerical procedure to be able to perform direct simulation of

3-D instabilities, make comparisons with experimental observations and provide further understandings for

such thin film instabilities.
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